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Abstract 

The Brillouin function arises in the quantum theory of paramagnetic materials, 
where it describes the dependence of the magnetization on the externally 
applied magnetic field and on the temperature of the system. There is no closed 
form exact analytical expression for the inverse Brillouin function, however, 
there have been several approximations proposed. In this work, we first 
compare relative errors and simplicity of several approximations for the inverse 
Brillouin function. Next, we demonstrate the application of the inverse Brillouin 
function by determining the Hamiltonian of the system using the simulation data 
of the magnetization dependence on the temperature. Then we compare the 
Hamiltonian that was used to set up the simulation with the Hamiltonian 
determined from the magnetization temperature dependence and an 
approximation to the inverse Brillouin function. We found that some of the 
approximations for the inverse Brillouin function can be used to accurately 
predict the Hamiltonian of the system given the magnetization dependence on 
temperature. 
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Introduction 

To study different paramagnetic phenomena in the classical and quantum theory of 
paramagnetism, two special functions are used. The first of these is the Langevin 
function [1]. This function appears when calculating the magnetization if there is a 
medium in which N atoms is contained in a unit volume. Magnetization takes place in 
cases where atoms have magnetic moments μ that are oriented to an external magnetic․ 
Several mathematical calculations will be shown in the next section of this paper.   

Another special function, which is applied while considering various problems related 
to the quantum theory of paramagnetism, is the Brillouin function [1]. In the 
contemporary professional literature not only the direct Brillouin function is used, but 
also its inverse function. These functions are normally mentioned in the following 
contexts: polymer science, molecular dynamics modeling, magnetism, rubber theory, 
etc. But unfortunately, the inverse Brillouin and Langevin functions cannot be calculated 
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analytically, so their approximations are taken, in which the relative error tends to the 
minimum. 

It is noteworthy to mention a few words about paramagnetism, in which we use the 
above-mentioned special functions. These atoms and molecules have an uncompensated 
spin magnetic moment. Other examples include free atoms and ions with incomplete 
inner shells, some molecules with an even number of electrons, lattice defects with an 
odd number of electrons, metals, other types of atoms and molecules. For the first time, 
the theory of paramagnetic susceptibility was created by P. Langevin and was used in 
the above mentioned problem. 

In modern literature, one may find the inverse Langevin function, has a wide range of 
uses. But the quest for the inverse Brillouin function, has not yet been crowned with 
success. Currently, the existing approximations of the inverse Brillouin function are 
being improved every day. In the sections below, we consider the Langevin and Brillouin 
functions, their existing approximations, their negative and positive sides, and their 
applications. 

I would like to mention some works related to the above-mentioned functions, their 
inverse functions and their areas of application. These topics were discussed in the 
works of the following authors: A.S. Arrott [2], Martin Kröger [3], M.I. Darby [4], and 
others whose research we will quote in this paper. 

At the end of this paper, a inference will be made about all the above mentioned in very 
detail, which will allow us to contemplate the indicated functions from new perspectives. 

Brillouin and Langevin functions and their applications 

Langevin function, it’s inverse function and their applications  

Let’s recall the above mentioned task. Suppose we have an environment that contains N 
molecules per unit volume. Magnetization arises only when the magnetic moments are 
oriented under the action of an external field. The energy U, which describes the 
interaction of magnetic moments (μ) with external field (B), is described by the following 
scalar product (1): 

𝑈 = − 𝝁 ∗ 𝑩      (1) 

This scalar product can be represented as follows (2): 

𝑈 = − 𝜇𝐵 𝑐𝑜𝑠 𝜃      (2) 

where θ is the angle between the moment vector and the direction of the field. 

Within this problem, the field magnetization is calculated by the following equation (3) 

𝑀 = 𝑁𝜇〈𝑐𝑜𝑠 𝜃〉      (3) 

where N, as mentioned above, is the concentration, 〈cosθ〉 is the average value of cos 



ISSN 2601-8683 (Print) 
ISSN 2601-8675 (Online) 

European Journal of  
Formal Sciences and Engineering 

July -December 2019 
Volume 2, Issue 2 

 

 
45 

θ taken from the spatial distribution of magnetic moments in the state of thermal 
equilibrium. 

If in this problem we use the Boltzmann distribution, then we can count the probability 
that the moment of the molecule is located in an element of a given solid angle 𝑑𝛺. This 
probability is proportional to  𝑒𝑥𝑝 (−𝑈/𝑘𝐵𝑇), and therefore the average value of cosθ (
〈cosθ〉) can be calculated by the following equation (4) 

〈𝑐𝑜𝑠 𝜃〉 = (∫ 𝑒−𝛽𝑈 𝑐𝑜𝑠 𝜃 𝑑𝛺) ∗ (∫ 𝑒−𝛽𝑈𝑑𝛺)−1    (4) 

here, 𝛽 ≡ 1/𝑘𝐵𝑇 designation is inserted, and 𝑑𝛺 = 𝑠𝑖𝑛 𝜃𝑑𝜑𝑑𝜃. In the above equation, 
integration is performed over all values of φ and over all values of θ. For all values of φ, 
we get 2π, a θ varies from 0 to π (5): 

〈𝑐𝑜𝑠 𝜃〉 =
∫ 2𝜋 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

𝜋

0
е𝛽𝜇𝐵 𝑐𝑜𝑠 𝜃𝑑𝜃

∫ 2𝜋 𝑠𝑖𝑛 𝜃
𝜋

0
е𝛽𝜇𝐵 𝑐𝑜𝑠 𝜃𝑑𝜃

    (5) 

For simplicity, let’s introduce the following reductions (6)  

 𝑠 ≡ 𝑐𝑜𝑠 𝜃 , 𝑥 ≡
𝜇𝐵

𝑘𝐵𝑇
     (6) 

and after integration we get the following equation (7) 

〈𝑐𝑜𝑠 𝜃〉 = ( ∫ 𝑒𝑥𝑝(𝑠𝑥) 𝑠𝑑𝑠

1

−1

) ∗ ( ∫ 𝑒𝑥𝑝(𝑠𝑥) 𝑑𝑠

1

−1

)

−1

= 

=
𝑑

𝑑𝑥
𝑙𝑛 ∫ 𝑒𝑥𝑝(𝑠𝑥) 𝑑𝑠 =

𝑑

𝑑𝑥
𝑙𝑛(𝑒𝑥𝑝(𝑥) − 𝑒𝑥𝑝(−𝑥)) −

𝑑

𝑑𝑥
𝑙𝑛(𝑥) = 𝑐𝑡ℎ𝑥 −

1

𝑥
≡ 𝐿(𝑥)

1

−1
 

 (7) 

The resulting function is called the Langevin function. It has the following form (8)  

𝐿(𝑥) = 𝑐𝑡ℎ(𝑥) +
1

𝑥
     (8) 

The final calculation of the magnetization field is made by the following formula (9) 

𝑀 = 𝑁𝜇𝐿(𝑥) = 𝑁𝜇(𝑐𝑡ℎ(𝑥) +
1

𝑥
)    (9) 

This function can be regarded in two cases. When 𝜇𝐵 ≫ 𝑘𝐵𝑇 and when 𝜇𝐵 ≪ 𝑘𝐵𝑇. In the 
first case, saturation can be found in the graph of the function, and the second case is of 
great interest for experimenters when calculating various kinds. 

Let's look at some approximations of the Langevin function. 

If in the Langevin function we expand in the series 𝑐𝑡ℎ (𝑥) then for small values of x we 
get the following expression (10) 

𝑐𝑡ℎ(𝑥) ≈
1

𝑥
+

𝑥

3
−

𝑥3

45
+ ⋯    (10) 
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Putting this expression into the Langevin function, we obtain the following 
approximation (11) 

𝐿(𝑥) ≈
𝑥

3
      (11) 

For magnetization, we obtain the following expression (12) 

𝑀 ≈
𝑁𝜇2𝐵

3𝑘𝐵𝑇
=

𝐶

𝑇
𝐵     (12) 

Where C stands for Curie (13) 

𝐶 =
𝑁𝜇2

3𝑘𝐵
      (13) 

Let’s discuss another approximation of the Langevin function. If we decompose the 
Langevin function in a Taylor series for small values of x, we get the following result (15) 

𝐿(𝑥) =  
1

3
𝑥 −

1

45
𝑥3 +

2

945
𝑥5 −

1

4725
𝑥7 + ⋯   (14) 

This approximation method is an alternative approximation of the 𝑐𝑡ℎ(𝑥) 
approximation. From the point of view of numerical calculation, both approximations 
are equivalent to each other and are more demanded than direct evaluation of an 
analytical expression. 

It can be said that the Langevin function has been fully investigated and is widely used 
in describing various tasks. 

Below we will discuss the Brillouin function. 

Brillouin function, it’s inverse function and their applications  

Brillouin function, inverse function and its applications 

We shall first and foremost recall the formula (15) 

𝐵𝐽(𝑥) =
2𝐽+1

2𝐽
𝑐𝑜𝑡ℎ (

2𝐽+1

2𝐽
𝑥) −

1

2𝐽
𝑐𝑜𝑡ℎ (

1

2𝐽
𝑥)   (15)  

In which 𝐽 is a positive integer or half-integer number, 

𝑥 stands for the relation of Zeeman energy ratio of the magnetic moment in an internal 
field to the heat energy. (16) 

𝑥 =
𝑔𝜇𝐵𝐽𝐵

𝑘𝐵𝑇
      (16) 

in which 𝑔 is factor 𝑔,  𝜇𝐵 is  Bohr magneton, 𝐽 is the full angular momentum, 𝐵 is the 
applied magnetic field,  𝑘𝐵 is Boltzmann constant, and 𝑇 is the temperature.  

Brillouin function changes by taking values from  -1 to 1, reaching +1 if 𝑥 → ∞  and -1 if 
𝑥 → ∞  . Brillouin function has a wide range of utilization, but most often it is used for 
calculating the magnetization of an ideal paramagnet. It describes the dependency of M 
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from the applied magnetic field B and the total angular momentum 𝐽. Magnetization is 
expressed through the formulum (17) 

𝑀 = 𝑁𝑔𝜇𝐵𝐽𝐵𝐽(𝑥)     (17) 

in which 𝑁 stands for the quantity of the atoms per unit volume. The Brillouin function 
turns into that of Langevin in the range of 𝐽 →  ∞ (8). If 𝑥 →  ∞, then 𝐵𝐽(𝑥) → 1 . This 

means that the magnetization gets saturated and the magnetic moments become totally 
aligned in the direction of the applied field. (18) 

𝑀 = 𝑁𝑔𝜇𝐵𝐽      (18) 

And now we shall talk about how one should find the inverse  function of Brillouin. It is 
impossible to achieve analytically, but one can throw some approximations apropos the 
𝑐𝑜𝑡ℎ (𝑥)  function and find the Brillouin inverse function with some accuracy.  If the error 
of this accuracy does not exceed the applied limit ( ~5%), then the given approximation 
can be safely used in different calculations. 

The first approximation can be done in case if 𝐽 = 1/2, and then 𝐵𝐽(𝑥) → 𝑡𝑎𝑛ℎ (𝑥). If we 

are to take this approximation into account, then we can safely write the following 
expression (19) 

 𝐵𝐽(𝑥) ≈ 𝑡𝑎𝑛ℎ (𝑛𝑥)       (19) 

in which 𝑛 is the coefficient dependent solely on 𝐽 . The absolute and relative mistakes 
depend on this coefficient. We shall turn to the works of Jeno Takacs in order to 
demonstrate the most precise result possible [5]. Here we have a result which is 
currently seen as the most precise and recent one, and it is presented as follows (20) 

𝑛 ≈
1

2,667𝐽
+ 0.2      (20) 

Given the value of 𝑛, the relative miscalculation makes about 4%. If we are to use the 
given approximation for 𝐵𝐽(𝑥) , then we will get the following result for the inverse 

function [5] (21) 

𝐵𝑗(𝑥)−1 ≈
𝑎𝑥𝐽2

1−𝑏𝑥2      (21) 

𝑎 and 𝑏 are the coefficients that have the following form (22) 

𝑎 =
0.5(1+2𝐽)(1−0.055)

𝐽−0.27
+

0.1

𝐽2  𝑏 = 0.8     (22) 

𝐽 changes from 1 to 10 . Model (21) is still relevant outside of these values, but with much 
less accuracy  which means that the error value increases.  

Let us discuss yet another version of Brillouin inverse function, and then we shall further 
discuss its use. This other version of Brillouin inverse function reappears when 𝐽 = 1/2 
which resembles the original function by its graph and predicts a quite low range of 
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miscalculation. It is as follows: (23) [6] 

𝐵𝐽(𝑥)−1 ≈ 𝑙𝑛 (
1+2𝑠

1−2𝑠
)      (23) 

𝑠 stands for magnetization. 𝑠 changes from 0 to ½ . This function cannot be used for other 
values, as there is a logarithm in the function: when the numerator has a negative sign, 
the function loses its physical meaning.  

Now let us discuss its use. The Brillouin inverse function is used in non-iterative mean 
field theory. Thus, the mean field equation for an arbitrary isotropic spin Hamiltonian of 
infinite range will be as follows (24) 

𝑠 = 𝜎𝐵𝐽(−𝛽𝜎
𝜕𝐻

𝜕𝑠
);  𝛽 =

1

𝑘𝐵𝑇
    (24) 

The given equation can be rewritten in the wollowing manner (25) 

𝑘𝑇 = −
𝜕𝐻

𝜕𝑠

𝐵𝐽(𝑥)−1        (25) 

One can calculate the dependence of T from s using this equation.  

The magnetic entropy can be presented in the following form  using the Brillouin 
inverse function (26) 

∆𝑆 = −𝑘𝐵 ∫ 𝐵𝐽(𝑠′)−1𝑑𝑠′𝑠

0
     (26) 

∆𝑆 is to represent the decrease in entropy relative to the paramagnetic phase. 

Conclusion 

To sum up, we can claim that the Brillouin inverse function is hard to compute in 
mathematical calculations.  Various approximations are put forward in order to 
overcome this problem. We have mentioned some of them above. One of these is the 
approximation 𝑡𝑎𝑛ℎ (𝑥) (19), and another one is the approximation 𝑙𝑛 (𝑥) (23). In the 
approximation 𝑡𝑎𝑛ℎ(𝑥), the obtained function works with a small admissible error in 
practice.  In the approximation, the obtained function in practice works with a small 
admissible error. The proof of that is the fact that 𝐵𝐽(𝑥) moves toward 𝑡𝑎𝑛ℎ (𝑥)  when 

𝐽 = 1/2.  

The analytical form of Brillouin inverse function has not yet been found. The 
abovementioned approximate Brillouin inverse functions work within the operating 
limits of the quantum number of angular momentum. The majority of materials have 𝐽 
from 1 to 10 in engineering practice. This is why many approximations of the Brillouin 
inverse function have a great demand in current studies.   
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