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Abstract 

Nowadays there are growing interests in vibration serviceability assessments of 
composite footbridges. The new design trends of composite footbridges make 
them slender civil structures that may be affected by the load action of walking 
pedestrians resulting in large deflections or even uncomfortable vibrations. 
Furthermore, the presence of people on the footbridges causes the addition of 
mass to the structural system and due to the human body’s ability to absorb 
vibrational energy, an increase in structural damping. In this paper, the 
interaction between pedestrian and structure is modelled using data from 
pedestrian characteristics and vibration data from a measured footbridge as a 
comparison basis. A previously developed numerical model was used, this model 
called Biodynamic Synchronized Coupled Model (BSCM) consists of a fully 
synchronized force model in the longitudinal and lateral direction of pedestrian’s 
movement and a biodynamic model with mass, damping and stiffness 
parameters. The model is coupled with the structure using the Finite Element 
Method at the feet’s contact points. Pedestrians are treated as individuals with 
intrinsic kinetic and kinematic parameters following a measured correlation 
matrix obtained by the use of an especially designed force platform. Finally, the 
adequacy of the proposed model to represent the pedestrians as BSCM for the 
walking effects on the structure is investigated by experimentally measured 
accelerations on a footbridge (freely walking). The numerical results show good 
agreement with the experimental results. 

Keywords: footbridges, human-induced vibration, crowd-footbridge interaction, 
walking, natural frequencies. 

  

1. Introduction 

Several cases of excessive vibrations have been studied in the past that are related to 
pedestrians' footbridges. Cases of unstable footbridges such as the Millennium Bridge in 
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London and the Solferino Footbridge in Paris have attracted professional attention. 
These footbridges presented large vibrations on their opening days (Dallard et al. [1]). 
Many footbridges have natural frequencies that are coincident with the dominant 
frequencies of the pedestrian induced load and therefore they have the potential to 
undergo excessive vibrations. It is noteworthy that humans are quite sensitive to 
vibration in a low-frequency range of whole-body vibrations where natural frequencies 
of the human body limbs and systems can be observed. Therefore, there are 
recommendations related to human body vibration, for example, ISO 2631 [2] which 
define limitation curves for exposure times in some frequency ranges. This paper 
presents a study on the interaction between walking pedestrians and a flexible 
footbridge. The paper uses some previous investigation results (Toso et al. [3] and Toso 
and Gomes [4]). A Biodynamic Synchronized Coupled Model (BSCM) is used to analyze 
the pedestrian structure interaction. This model brings together interaction in 3D with 
several 1 DOF models to model human crowds walking and interacting with structures. 
In the longitudinal and transversal direction of movement a Fully Synchronized Force 
Model (FSFM) is used and in the vertical direction, it is combined with a biodynamic 
model (mass-spring-damper parameters) that is coupled to the structure. Besides, 
experimental data for a real footbridge considering a pedestrian crowd are presented 
which confirms the trends suggested by the numerical modeling.  

2. Literature Review 

Zivanovic et al. [5] state that the pedestrian-structure-interaction needs to consider in 
footbridges design, mainly in the design of slender structures that are dynamically 
excited by humans. Excessive vibrations may cause discomfort to pedestrians and 
potential deterioration of the footbridge’s structural integrity. Stoyanoff and Hunter [6], 
report that the natural frequencies of short-span footbridge are usually not susceptible 
to pedestrian vibrations. However, when the distance between the spans increases, the 
natural frequencies of the structure decrease, and the human occupation and interaction 
on them becomes a concern due to the resonance phenomena. The authors state that, 
during walking, vertical forces produce frequencies between 1.5 and 4.0 Hz, while lateral 
forces produce frequencies between 0.75 and 2.0 Hz. Considering lateral oscillations, 
Bodgi et al. [7], state that a crowd on a footbridge imposes a lateral dynamic excitation 
on the structure at a frequency close to 1.0 Hz. When the first vibration mode decreases, 
being in the same range as the human step rate, the resonance may occur. Consequently, 
there is an increase in the oscillation amplitude of the structure and the pedestrians are 
forced to change their natural gait. If the amplitude of oscillation is large enough, the 
phenomenon called pedestrian-structure synchronization occurs. Researchers such as, 
Wheeler [8] state that the crowd effect is not significant unless the pedestrian's step rate 
is close to 2.0 Hz. The author affirms that the effect of the pedestrian crowd on a 
footbridge with fundamental frequency away from the typical step rate (2.0 Hz) may be 
negligible because the vibratory response of the structure may be lower when compared 
to a single pedestrian walking at a frequency identical to the fundamental frequency of 
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the analysed structure. Qin et al., [9], evaluated the dynamic response of a footbridge 
(analytical study) considering a single pedestrian and the effects of interaction between 
human-structure. The analysed footbridge was modelled as a simply supported Euler-
Bernoulli beam with uniform cross-section. The pedestrian damping varies over time, 
considering the individual's walking speed. A controlled force was used to compensate 
the energy dissipated during walking. The effects of stiffness and damping of the human 
body were investigated. According to the authors, for a flexible structure, the pedestrian-
structure dynamic interaction is greater when compared to a rigid structure. There is 
also potential elastic energy of the individual's legs, "tending to separate the pedestrian 
from the structure," being greater when the individual is near to footbridge mid-span. 
As result of the interaction between pedestrians and flexible structures, it is noted that 
the individual must impose more external energy and modify the walking pattern to 
maintain his steady gait and a relatively uniform dynamic behavior of the body's center 
of mass. Recently, Tubino [10] proposed a numerical model that accounts for pedestrian 
structure coupling in the vertical direction. The footbridge was modelled as a continuous 
unidimensional beam dynamic system, while pedestrians were schematized as moving 
single-degree-of-freedom systems with random dynamic properties. The paper results 
show possible variations of damping ratio and natural frequency in the coupled system 
based on the random pedestrians' parameters. Regarding pedestrian loads, these forces 
have been determined from investigations using force platforms, treadmill machines, 
and even prototype footbridges, in which the applied force is the amount produced by a 
single walking pedestrian. The combined force applied by individuals is considered for 
groups of pedestrians or crowds. Thus, the design load is a force model. To analyse the 
analytic human-induced loads, most of guidelines, for instance, SETRA [11] and ISO 
10137 [12] often consider three to five harmonics of the frequency spectrum of ground 
reaction forces (GRF). During walking, a pedestrian produces dynamic forces with 
components in three directions: vertical, lateral and longitudinal to the footbridge. The 
vertical component is generated by the impact of supporting the body weight on each 
leg alternately. In the lateral direction, the forces are generated by the periodic balance 
of the body when changing legs. Finally, in the longitudinal direction, the force is the 
result of friction between the foot and the floor, as well as the acceleration and 
deceleration of the body in this direction. Using force platforms, some researchers 
(Harper et al., [13]; Galbraith and Barton, [14]; Blanchard et al., [15]; Kerr, [16]) conclude 
that the vertical component of the resultant force of an individual has two peaks and a 
valley as shown in Figure 1. The other force components are also present in the figure. 
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Figure 1: Typical forces during walking: (a) vertical, (b) lateral and (c) longitudinal 
direction. (Zivanovic et al. [5]). 

3. Methodology 

This paper proposes to assess the pedestrian-structure interaction using data from an 
experimentally measured footbridge as a basis for comparisons. In the longitudinal and 
transversal direction of movement a Fully Synchronized Force Model (FSFM) is used and 
in the vertical direction, it is combined with a biodynamic model (mass-spring-damper 
parameters) that is coupled to the structure (herein called, BSCM, Biodynamic 
Synchronized Coupled Model). The biodynamic model considers the synchronization of 
the three force components applied in space (positions where they should be applied) 
and in time (peak and valleys of the three force components occurring synchronously at 
the proper time) with a spring-mass-damper model, coupled continuously with the 
structure’s FEM. Following the use of the BSCM, the mid-span RMS (root-mean-square) 
acceleration of a footbridge structure is evaluated to check its serviceability. For the 
applied BSCM, kinetic (forces) and kinematic (speeds, pacing rate, step length, and step 
width) parameters are used. Then the BSCM results are compared with the FSFM and 
these results are compared with experimental data. 
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3.1. Force Models  

Design Codes use simplified force models to represent the force magnitude from 
successive footfalls. These models assumes forces acting in a straight line along the 
direction of walking at a constant speed (SETRA Guideline [11] and ISO 10137 [12]). This 
is a very common assumption for the analysis and design of footbridges. It is obvious the 
major disadvantages in using this simplified model as it lacks for dynamic interaction 
(only time-varying forces are used) and the spatiality and synchronization of application 
of the three forces components. SETRA Guideline [11] and ISO 10137 [12]) use force 
models to vertical, lateral and longitudinal direction of the walking, based in Fourier 
series. Overall, these models produces acceleration unsafe values, since they are based 
on excessively simplified load models. Then, it is necessary to incorporate other 
parameters to simulate the pedestrian-structure interaction (for instance, considering 
biodynamic models). Furthermore, in a recent publication Toso et al. [3] proposed a 
force model called Fully Synchronized Force Model (FSFM). In that model, the changes 
in velocities during the walking (single and double stance phase) were considered and 
they were synchronized in time and space. The authors pointed that the pedestrian 
speed in the double stance phase is greater than at single stance phase. This speed is also 
greater than the average speed of the pedestrian. Another important characteristic is 
that human walking does not occur in a straight line in the direction of walking (as 
proposed by Guidelines). There are parameters like step length and step width that 
influence the application of the resulting force. Using a specifically designed force 
platform, these kinematic parameters were measured, and average values for a test 
campaign with 54 subjects were presented by Toso et al. [3]. In that proposed force 
model, peak and valley values from each force component should be placed accordingly 
in the right position of the contact surface and the model’s reference time adjusted to the 
correct phase. Thus, there is a spatial and temporal synchronization of the three ground 
reaction force components. More details about the Fully Synchronized Force Model 
(FSFM) can be found in Toso et al. [3].  

3.2. Biodynamic Synchronized Coupled Model 

In the literature, there is a consensus that shifts in the structural natural frequencies are 
not observed when modelling the pedestrians using force-only models. This will only be 
present, as indicated by experimental measurements of a crowd of pedestrians crossing 
footbridges, if mass, dissipative effects, and synchronism of applied loads are taken into 
account. Another observed feature is the structural damping increase when considering 
pedestrians like biodynamic models. This is attributed to the human body’s ability to 
absorb energy, a feature represented only when introducing the biodynamic models. In 
this paper, the FSFM (Fully Synchronized Force model) is merged to a biodynamic model 
resulting in the so-called BSCM (Biodynamic Synchronized Coupled Model) composed of 
mass, damping, and stiffness, with a single degree of freedom (SDOF) that represents the 
action of a walking pedestrian in the vertical direction. Afterward, the model’s degree of 
freedom is continuously coupled to the structure in the places where the feet have 
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contact with the floor and replicated to represent a pedestrian crowd. This replication 
takes into account intra and inter-subject variability (mainly due to subject’s weight, 
height, step length, step width and pacing rate). This makes possible to analyze the 
structural behaviour according to distinct crowd densities in a systematic way. Toso and 
Gomes [4] proposed this model, where a biodynamic model with synchronization of the 
three force components applied in space (positions where they should be applied) and 
in time (peak and valleys of the three force components occurring at the proper time) 
was presented. This biodynamic model is coupled continuously with the structure’s FE 
Model. The biodynamic model has been conceived in a way that the actuator force is the 
main source that drives the human will for walking, generating oscillations in the vertical 
direction. The actuator reasoning is based on experimentally obtained vertical force 
(using a force platform) and acceleration data (using an accelerometer attached to the 
pedestrian’s body waist). This allows the fit of the biodynamic model (with actuator) in 
order to match measured vertical ground reaction force and acceleration along time, in 
a rigid platform. It is important to note that, for flexible structures, the interaction force 
will change as the flexible structure add a relative displacement to the biodynamic 
model. A biodynamic model for flexible structure, including mass, damping, stiffness and 
actuator that is coupled to the footbridge in the vertical direction is considered, 
according to Figure 2. 

 

Figure 2: The biodynamic single degree of freedom system composed of mass, damping, 
stiffness and actuator and flexible structure situation.  

In this figure, 𝑢𝑝
∗  is the pedestrian vertical displacement around the center of mass in the 

initial equilibrium rest configuration, considering a rigid and a flexible structure; 𝑐𝑝 and 

𝑘𝑝 are the damping and stiffness of pedestrian; 𝐹𝐴  is the vertical actuator force; 𝑣 is the 

pedestrian speed; 𝑚𝑝 is the pedestrian modal mass; 𝑢𝑠 is the structural displacement 

and 𝐹𝑖𝑛𝑡 is the interaction force. 

The model proposed allows assessing interactions with both rigid and flexible 
structures. Toso and Gomes [4] presented a complete description of the model; here it is 
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showed some equations to evaluate the pedestrian structure interaction. Equation (1) 
represents the pedestrian’s interaction force {𝑭𝒊𝒏𝒕} when walking on a flexible structure, 
according to presented in Figure 2. 

{𝑭𝒊𝒏𝒕} = {𝑯(𝑒, 0)}
𝑇
[−𝑐𝑝(�̇�𝑝 − {𝑯(𝑒, 0)}{�̇�𝑠}) − 𝑘𝑝(𝑢𝑝 − {𝑯(𝑒, 0)}{𝒖𝑠}) + 𝐹𝑅]                         

(1)                                           

Here: {𝑯(𝑒, 0)} = [0 1 0]1×3[𝑵
𝑒(0)]3×6

[𝑸]6×𝑛. Where [𝑵𝑒(0)]3×6
 is the shape 

function, assuming a plane structural beam Euler-Bernoulli finite element; [𝑸]6×𝑛 is 
used in order to evaluate only the displacements in the vertical direction at the contact 
point; 𝑢𝑝 and �̇�𝑝 are the displacements and velocities related to the interaction between 

pedestrian and flexible structure; {𝒖𝑠} and {�̇�𝑠} are the displacements and velocities 
related to structure; 𝐹𝑅 is the pedestrian vertical reaction force, measured in a rigid 
structure.  

3.2.1. Linking the biodynamic model to the structural equations of motion 

Equations (2), (3) and (4) represent the matrices of the coupled system (pedestrian and 
structure), that takes into account mass, damping and stiffness respectively. 

[𝕄]𝒏+𝟏 × 𝒏+𝟏 = [
[𝐌]𝒏× 𝒏 {𝟎}𝒏×𝟏
{𝟎}𝑻

𝟏× 𝒏
𝑚𝑝

]              (2) 

[ℂ(𝑡)]𝒏+𝟏 ×  𝒏+𝟏 = [
[[𝑪]𝒏×𝒏 + 𝑪

∗(𝑖)𝒏×𝒏] −{𝑯(𝑒, 0)}
𝑇
𝑐𝑝

−{𝑯(𝑒, 0)}𝑐𝑝 𝑐𝑝
]    (3) 

[𝕂(𝑡)]𝒏+𝟏 × 𝒏+𝟏 = [
[[𝑲]𝒏×𝒏 +𝑲

∗(𝑖)𝒏×𝒏] −{𝑯(𝑒, 0)}
𝑇
𝑘𝑝

−{𝑯(𝑒, 0)}𝑘𝑝  𝑘𝑝
]     (4) 

One way to solve the time domain Equation of motion is by using direct numerical 
integration. In this paper, the Newmark integration scheme (Bathe [17]) is used in order 
to evaluate the structural response considering all the structural vibration modes.  

Toso and Gomes [4] showed that considering a three-dimensional truss element, the 
human-structure interaction model can be evaluated using the Equation (5): 

[
[𝐌] [𝟎]

[𝟎] 𝑑𝑖𝑎𝑔{𝒎𝑝}
] {
{�̈�𝑠}

 {�̈�𝑝}
} + [

[[𝑪] + [𝑯]𝑇𝑑𝑖𝑎𝑔{𝒄𝑝}[𝑯]] −[𝑯]𝑇𝑑𝑖𝑎𝑔{𝒄𝑝}

−𝑑𝑖𝑎𝑔{𝒄𝑝}[𝑯] 𝑑𝑖𝑎𝑔{𝒄𝑝}
] {
{�̇�𝑠}

 {�̇�𝑝}
} + 

                             [
[[𝑲] + [𝑯]𝑇𝑑𝑖𝑎𝑔{𝒌𝑝}[𝑯]] −[𝑯]𝑇𝑑𝑖𝑎𝑔{𝒌𝑝}

−𝑑𝑖𝑎𝑔{𝒌𝑝}[𝑯] 𝑑𝑖𝑎𝑔{𝒌𝑝}
] {
{𝒖𝑠}

 {𝒖𝑝}
} = {

{𝑭(𝑡)}

{0}
} −

{
{𝑭𝑹(𝑡)}

{0}
}                 (5) 
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where 𝑑𝑖𝑎𝑔{𝒎𝑝}, 𝑑𝑖𝑎𝑔{𝒄𝑝} and 𝑑𝑖𝑎𝑔{𝒌𝑝} will contain the mass, damping and stiffness 

parameters of each of the pedestrians. 

4. Numerical and experimental results 

The analyzed structure is located in the city of Brasília, Brazil. It is a composite footbridge 
(34.08 m in length, 2.4 m in width and 2.25 m in height). The footbridge roof is built with 
a curved reinforced concrete shell. The deck floor consists of reinforced concrete planks 
that are simply supported on the truss members that link the left and right side of the 
footbridge. The handrails consist of hollow tubular steel bars. Additional information, 
design details, materials properties, etc. can be found in Brasiliano et al. [18]. Figure 3 
shows the analyzed footbridge. 

 

Figure 3: Analyzed footbridge. 

4.1. Numerical model results 

In this topic, a dynamic analysis is performed to investigate the footbridge dynamic 
behaviour under a pedestrian crowd (0.25 pedestrians/m2). This analysis consider: (a) 
a Biodynamic Synchronized Coupled Model (BSCM) that considers an actuator in the 
vertical direction of each pedestrian, and a fully synchronized force model as 
mechanisms for the willingness of walk, in a number that represents some crowd; (b) a 
Fully Synchronized Force model (FSFM) to vertical, longitudinal and lateral directions. 
The two models use the dynamic load factors proposed to SETRA Guideline [11] for force 
estimation. Both models assume the entry of the pedestrians on the footbridge is 
randomly generated, considering the effective width of the structure and keeping the 
specified crowd densities. Pedestrians and their characteristics are represented using 
random variables, following a Gaussian distribution based on average parameters, 
coefficients of variation and a correlation matrix of experimental data. Monte Carlo 
method is used to obtain the pedestrian’s kinematic parameters, which results in 
different pacing frequency, step length, step width etc. for each individual (Toso et al. 
[3]). Regarding to biodynamic parameters, Toso et al. [19] proposed a single degree of 
freedom (SDOF) biodynamic model to obtain the following parameters: mass (m), 
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damping (c) and stiffness (k). In this paper, those equations were used to corresponding 
to the data of the analysed crowd. These biodynamic parameters are used in Equation 5.  

Individuals have different characteristics, for instance height, mass, pacing rate etc. 
According to Toso et al. [3], the crowd characteristics are modelled based on mean value 
and standard deviation of the group of pedestrians being modelled. Each random 
variable follows a correlated Gaussian distribution based on experimentally obtained 
data. So, for the number of pedestrians that are to be modelled, samples are generated 
based on a correlated Gaussian distribution for these parameters. Besides, it is also 
reasonable to assume that for a specific individual, there are some trends in the kinetic 
and kinematic parameters such as, body mass, step length, step width, pacing rate, etc., 
that justifies the use of a correlation matrix (Toso et al. [3]).  

Figure 4 presents the results of the mid-span accelerations in the longitudinal, vertical 
and lateral directions. This numerical simulation uses the Biodynamic Synchronized 
Coupled Model (BSCM). This model is couple to the structure in the vertical degree of 
freedom. In other directions remaining the fully synchronized force model. This analysis 
assumes that the three force components are completely synchronized (time and space), 
and uses the kinetic and kinematic parameters for the pedestrians. A pedestrian crowd 
of 0.25 pedestrians/m2 is use in this simulation. 

(a)  

(b)  
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(c)  

Figure 4.  Acceleration response for BSCM and crowd density 0.25 ped/m2: 

a) longitudinal, b) vertical and c) lateral directions. 

Figure 5 shows the results of mid-span acceleration for longitudinal, vertical and lateral 
direction, considering just the Fully Synchronized Force Model (FSFM) in three 
directions. As in the previous example, there is no synchronism between pedestrians, 
that have their own pacing rates, and crosses the footbridge only once.  
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Figure 5.  Acceleration response for FSFM and crowd density 0.25 ped/m2:  

a) longitudinal; b)vertical; c) lateral direction. 

The numerical results presented in Figures 4 and 5 shows natural frequencies to around 
2.0 Hz. These frequencies are associated with pedestrians’ pacing rates. A frequency 
about 3.91 Hz corresponds to the natural frequency of the first vertical bending mode of 
the structure that was excited by the pedestrian crowd. Furthermore, the fundamental 
frequency of the structure (frequency about 3.0 Hz which corresponds to the lateral 
bending mode) was also excited by the pedestrian crowd, using both models. 
Considering the lateral and longitudinal directions the previous results shows 
frequencies around 11.0 and 13.0 Hz. These frequencies are excited due to the presence 
of the pedestrian thrust and deceleration phases in the human step and the zig-zag 
pattern in the force application. These frequencies are not excited if Design Codes 
(simplified force models) are used, because Design Codes assumes that the forces acting 
in a straight line along the direction of walking at a constant speed. Furthermore, the 
torsional mode (6.20 Hz) was also excited using both models, due to the spatiality of 
application of the pedestrian load that produces torsion in the footbridge. These 
frequencies, again, will not appear if simplified force models be used, since this model 
assumes the application of the load along a straight line.  

Table 1 shows the RMS acceleration (footbridge’s mid-span response) obtained with the 
two models (FSFM and BSCM). The acceleration was obtained in longitudinal, vertical 
and lateral directions. These results show BSCM presented lower acceleration values 
than FSFM in all directions.  

Table 1. RMS acceleration response for a density of 0.25 pedestrians/m2. 

               RMS mid-span acceleration (m/s²) 

Model 
Longitudina
l 

Vertical Lateral 

FSFM 0.0026 0.0526 0.0158 
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BSCM 0.0019 0.0394 0.0070 

* FSFM: Fully Synchronized Force model; BSCM: Biodynamic Synchronized Coupled 
Model. 

Regarding the influence of the BSCM, considering a crowd density of 0.25 ped./m2, it is 
noted that both models (Biodynamic Synchronized Coupled Model and Fully 
Synchronized Force model) presented a fundamental frequency about 3.91 Hz, i.e., there 
was no modification in the structural fundamental frequency. Additional simulations 
(Table 2) show that for the crowd density of 0.50 and 0.75 ped./m2 the use of FSFM still 
results in structural fundamental frequencies at 3.91 Hz, as expected. However, the 
BSCM presents a decrease in the structural fundamental frequency, according to Table 
2, proving the previous trend. It is concluded that this is due to increase in overall mass 
as the crowd density increases. Maybe such decrease in natural frequency was not 
observed in a crowd density of 0.25 ped./m2 due to a low number of pedestrians. 

Table 2. Structural fundamental frequency (Hz). 

 Crowd Density (ped./m2)  

Model 0.25        0.50  0.75  

FSFM 3.91 3.91 3.91  

BSCM 3.91 3.61 3.47  

                              * FSFM: Fully Synchronized Force model; BSCM: Biodynamic 
Synchronized Coupled Model. 

4.2 Experimental results 

The results presented in Figure 6 correspond to the investigated pedestrian density 
(0.25 ped./m2). In a previous publication, Brito et al. [20] measured the vertical 
acceleration of this footbridge at the mid-span. In this case and crowd density, the 
subjects crossed the structure freely, maintaining their own pacing rates.  

       

Figure 6. Mid-span vertical acceleration: experimental measurement (0.25 ped./m2). 
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Both models BSCM and FSFM presents a similar shape for the vertical acceleration. The 
results for BSCM from Figure 4(b) shows a peak acceleration of 0.15 m/s². Using the 
FSFM (Figure 5b) the acceleration peaks are 0.20 m/s² and the experimental values are 
about 0.40 m/s2. One can note that these numerical results are underestimating actual 
peak vibration. In terms of vertical RMS acceleration, the values became closer to the 
experimental ones (0.068 m/s2), with FSFM resulting in 0.0523 m/s2 and BSCM 0.0394 
m/s2. It should be emphasized that this comparison was harmed because most of the 
BSCM parameters were not available and the experimental campaign was performed 
previous to the development of the BSCM.  

Figure 7 shows the spectrogram for the corresponding mid-span vertical acceleration: 
experimental measurement. This shows how the natural frequency varies along time 
according to the mass variation due to crowd flow. One can notice that the main lower 
frequency only happens during the crowd entrance in the footbridge (approximately 
from 6 s to 35 s). The second main frequency happens along all the experiment.  

 

Figure 7. Spectrogram for the mid-span vertical acceleration: experimental 
measurement (0.25 ped./m2). 

Conclusions 

In this paper, it is used a biodynamic model with synchronization of the three force 
components in space and in time with a stiffness-mass-damper model coupled with the 
structure’s FEM to assess the pedestrian structure interaction. Both models used here 
(Biodynamic Synchronized Coupled Model and Fully Synchronized Force Model 
underestimated the peak vertical acceleration values when compared to the 
experimental ones and this suggest other sources of uncertainty may affect the final 
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behavior. The effect of the BSCM in other simulation for higher crowd densities (0.50 
and 0.75 ped./m2) could be noticed since the simulated structure presented 
modifications in the dynamic behaviour as a decrease in first natural frequency and 
increase in the overall damping as the crowd density increases. This suggests the human 
body effectively dissipates part of this vibration energy. The results of the dynamic 
analysis using FSFM rendered larger RMS accelerations, mainly in the lateral and 
longitudinal direction if compared with the BSCM. Additional frequencies present in 
both spectral acceleration in the lateral and longitudinal directions can be attributed to 
the use of the synchronized force model, used in both models. The observed differences 
in spectral accelerations in the vertical direction are attributed to the biodynamic effect 
that is present in BSCM and not in the FSFM.   

Regarding to natural frequencies of footbridge, the vertical fundamental frequency of 
3.91 Hz was identified experimentally and numerically. This is a relatively high 
frequency when considering structures with similar spans according to CEB [21]. 
Possibly, this characteristic is a consequence of the balance of stiffness and mass 
obtained when using a composite footbridge (steel truss and concrete floor). Such 
characteristics are desirable, avoiding that the structural fundamental frequency be a 
value close to the frequencies of excitation of the first harmonic of the pedestrian 
walking. Considering the lateral fundamental frequency, experimentally, the frequency 
of 3.12 Hz was obtained. This value is far from the frequency range considered to be 
critical, which are values close to 1.0 Hz. As for the vertical structural acceleration, the 
footbridge has vibration amplitudes below the values set by standards for comfort limits, 
which are of the order of 0.5 to 0.7 m / s² (OHBDC [22]; BS-5400 [23]; Eurocode 5 [24] 
and SETRA Guideline [11]). Numerically, it was observed that the excitation range of the 
second harmonic, excited by some pedestrians, are frequency values very close to the 
vertical structural fundamental frequency. However, the results of numerical 
simulations with different pedestrian’s densities, walking on the footbridge indicate that 
it is not subject to excessive vibrations. 
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