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Abstract 

This article contains the OLS method, WLS method and bootstrap methods to 
estimate coefficients of linear regression and their standard deviation. If 
regression holds random errors with constant variance and if those errors are 
independent normally distributed we can use least squares method, which is 
accurate for drawing inferences with these assumptions. If the errors are 
heteroscedastic, meaning that their variance depends from explanatory 
variable, or have different weights, we can’t use least squares method because 
this method cannot be safe for accurate results. If we know weights for each 
error, we can use weight least squares method. In this article we have also 
described bootstrap methods to evaluate regression parameters. The 
bootstrap methods improved quantile estimation. We simulated errors with 
non constant variances in a linear regression using R program and 
comparison results. Using this software we have found confidence interval, 
estimated coefficients, plots and results for any case. 

Keywords: homoscedasticity, heteroscedasticity, studentized errors, ncvTest. 

 

Introduction 

The processes of model fitting are: model selection, parameters estimation, checking 
the adequacy of the model, calculating confidence intervals and testing hypotheses 
about the parameters in the model and interpreting the results. In the chosen model 
we have to consider: the assumption of observation independence or at least 
unrelated, a single error term in the model, the choice of scale for the analysis, the 
choice of variables that will be included in the model. 

If the variability comes only from variability of errors and variance of the errors term 
does not depend from the values of the explanatory variable X, thus have equal 
variance. This property is called homoscedasticity.  

A test that controls the dispersion of errors in a regression is called "Breusch-Pagan 
test" by Breusch, and Pagan, 1979, which control the hypothesis if the variance of 
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errors is constant versus the alternative the error variance changes with the level of 
response. With command “ncvTest”, which is into the R program we compute a score 
test of the hypothesis of constant error variance. 

In issue 1.1 is treated least squares method to estimate the parameters of regression, 
hat matrix, leverages, studentized residuals, variance of parameters and the standard 
error for a particular component. 

In issue 1.2 is treated weight least squares method. In this case the errors have 
unequal variance where the form is known. A test that controls the dispersion of 
errors in a regression is called "Breusch-Pagan test" by Breusch, and Pagan, 1979, 
which control the hypothesis if the variance of errors is constant versus the 
alternative the error variance changes with the level of response. 

In issue 1.3 is treated bootstrap methods to estimate parameters of linear regression. 
Finally in issue 1.4 is simulated a linear regression with heteroscedasticity errors. 
Using R software we have found confidence intervals, estimated coefficients, plots and 
results for any case. In this issue are shown the commands that are used in R to get 
the results.  

1.1 Least squares linear regression 

A vector of observations 1( ,..., )ny y y=  having n component is assumed to be a 

realization of a random variable Y whose components are independently. If we repeat 
the observation for a value given by the explanatory variable, we will not necessarily 
have the same value from the explained variable, so we may have another value 
because they explained variable will be considered a random variable (Ronald E. 
Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Probability and Statistics 
for engineers and Scientists”). 

Explanatory variable X will be considered as fixed values, matrix with size n p . 

The linear regression model is: 

,Y X e= +        (1) 

where: 2( / ) ( ) nC Y X C e I= = , ( ) 0E e = . ( )C e  is covariance matrix, In is matrix unit 

n n , 

( / )E Y X X= . 

To estimate the parameters 0 1, ,..., p   , we use the least squares method. The sum 

of the squared errors (SSE) is: 

2

1 0

( ) ( ) ( ) ( ).

pn
T

i j ij

i j

SSE Y x Y X Y X   
= =

= − = − −    (2) 
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The least squares estimators 0 1
ˆ ˆ ˆ, ,..., p   , which minimizes ( )RSS   are: 

1ˆ ( )T TX X X y −=       (3) 

if 
1( )TX X −

 exists. The equation Y X= is called the theoretical regression equation, 

while ˆŷ X =  the fitted least squares regression equation. 

1ˆ ( )T TX X X X X y Hy −= =      (4) 

1( )T TH X X X X−=  is called hat matrix. Residuals: ˆ ˆ ( )ne y y I H Y= − = − . 

Studentized residuals are: 

ˆ
,

ˆ 1

i
i

i

e
r

h
=

−
       (5) 

which if the model is assumed correctly they have variance equal to 1 and ( , )i jcorr r r  

tend to be small. The quantities i iih h=  are known as leverages, the main diagonal 

elements of hat matrix H. Studentization of residuals can only correct the natural non-
constant variance in residuals when the errors have constant variance. If there is 
some underlying heteroscedascity in the errors, studentization can not correct for it. 

( ) ( ) 0
(1 )

i
i

i

e
E r E

h
= =

−
, and 

2

22 2

(1 )1
var( ) var( ) 1.

(1 )( 1 )

i
i i

ii

h
r e

hh





−
= = =

−−
 

Residual sum of squares: 

ˆ ˆ ˆˆ ˆ( ) min[ ( )] ( ) ( ) ( )T T T
nRSS RSS e e Y X Y X y I H Y


   = = = − − = − . 

If ( ) 0E e =  and 2( ) nC e I= , then 

ˆ( )E  = , 2 1ˆvar( ) ( )TX X  −=     (6) 

2
ˆ( )

ˆ .
( 1)

RSS

n p


 =

− +
      (7) 

The standard error for a particular component is: 1ˆ ˆ( ) ( )T
i iise X X −= . 

If errors are independent and identically normally distributed with mean 0 and 

variance 2 , which means 2~ ( , )ny N X I  , then using the fact that linear 

combinations of normally distributed values are also normal: 

1 2ˆ ~ ( ,( ) ).TN X X  −       (8) 
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We can use these results to test hypothesis about parameters and to construct 
confidence intervals for  . The estimators have normal distribution, if the errors 

have normal distribution. If the errors do not have normal distribution, then this 
method cannot be safe for accurate conclusions. 

1.2 Weighted least squares method 

The basic tool for examining the fit is the residuals, and we have already looked for 
patterns in residuals and assessed the normality of their distribution. Where the 
errors are uncorrelated, but have unequal variance where the form is known we can 
use weighted least squares (WLS). A simple case: 

( / ) ,T
i iE Y X x x= =       (9) 

2

var( / ) var( ) ,i i

i

Y X x e
w


= = =      (10) 

where iw  for i = 1,…,n are known. In this situation the model is: 

Y X e= + , 
2 1var( ) .e W −=      (11) 

The sum of the squared errors in this case is:
 

2( ) ( ) ( ) ( ) .T T
i i iRSS Y X W Y X w Y x   = − − = −   (12) 

Weighted least squares estimations of parameters are: 

1ˆ ( ) .T TX WX X WY −=       (13) 

Weighted least squares is appropriate when the form of the non-constant variance is 
either known exactly. A test that controls the dispersion of errors in a regression is 
called "Breusch-Pagan test" by Breusch, and Pagan, 1979, which control the 
hypothesis if the variance of errors is constant versus the alternative the error 
variance changes with the level of response (fitted values), or with a linear 
combination of predictors. 

Suppose we have a regression model: 

 0 1 1 , 1, ,p pY X X e i n  = + + + =    (14) 

 
2var( ) ( ).e X h X=     (15) 

If the function h (.) is linear in relation to independent variables, then the last equation 

can be written in the form: 2
0 1 1var( ) ( ).p pe X X X   = + +  
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We build auxiliary regression: 2
0 1 1

ˆ
p pe X X  = + + + . Estimate the regression 

coefficients with the least square method and check the hypothesis that all 
coefficients of the least regression equation, in addition to the first coefficient, get the 
zero value. 

0 1 2: 0pH   = = = =  versus : 0, 1, , .a iH there is at least one i where i p  =
 

1.3 Re-sampling errors and re-sampling cases in regression 

Re-sampling errors are a bootstrap method to provide more accurate analysis. The 
application of bootstrap in linear regressions was originally made by Bradley Efron 
and Robert J Tibshirani (1993). The algorithm for model based re-sampling in simple 
linear regression (A.C.Davison and D.V.Hinkley 1997, p. 262). Another bootstrap 
method is re-sampling cases (A.C.Davison and D.V.Hinkley 1997, p. 264). In this 
method we make no assumption if variance is constant. 

1.4 Simulation: True regression, OLS regression, WLS regression and bootstrap 
methods. Using R software 

We start with regression where we know the true linear regression and simulation 
the errors of regression: 20 10 ,Y X= +  

where Y- define the response variable. X - predictor variable (explanatory variable). 

We simulate the errors in regression such that their variances are linearly dependent 

on variable X . The aim here is to see the difference between results derived from 
different methods. At first download packages in R program: library(car), 
library(MASS), library(nlme), library(boot). 

The blue and bold words written below are the commands we used in the program R. 

x<-seq(0,29,by=1) # explanatory variable 

y = 20+10*x + rnorm(30,0,sapply(x,function(x){1+5*x})) # response variable 

sim.data<-data.frame(y,x) 

OLS regression 

fit.ols = lm(y~x, data=sim.data) # OLS regression 

summary(fit.ols) 

Coefficients (OLS regression): 
  Estimate Std. Error t value
 Pr(>|t|) 
Intercept  

0  9.348 25.969 0.360 0.722 

 
1  10.024 1.538 6.518 0.00013*** 
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Residual standard error: 74.56 on 28 degrees of freedom. Multiple R-squared: 0.6028, 
Adjusted R-squared: 0.5886. F-statistic: 42.48 on 1 and 28 DF, p-value: 0.0001305. 

We find the confidence intervals for the coefficients of the OLS regression using: 
confint(fit.ols). 

WLS regression 

With command ncvTest computes a score test of the hypothesis of constant error 
variance against the alternative that the error variance changes with the level of the 
response (fitted values), or with a linear combination of predictors. Breusch, T. S. and 
Pagan, A. R.1979. 

ncvTest(fit.ols) # test for heteroscedasticity 

Non-constant Variance Score Test. Chisquare = 5.75913, Df = 1, p = 0.01640319. The 
p-values suggestion to reject the hypothesis of homoscedasticity and we accept 
heteroscedasticity random errors. We expected this result because such as we 
designed simulated errors. Now we use weight least square method. Try fitting the 
regression with weights and see what the difference is. 

fit.wls = lm(y~x, weights=1/(1+5*x), data=sim.data) 

summary(fit.wls) 

Coefficients (WLS regression): 

  Estimate Std. Error t value Pr(>|t|) 

Intercept   
0  19.5242 6.5710 2.971 0.00245**  

 
1  9.3218 0.9343 9.998 1.01e-10*** 

 

Residual standard error: 7.674 on 28 degrees of freedom. Multiple R-squared: 0.7805. 
Adjusted R-squared: 0.7726. F-statistic: 99.55 on 1 and 28 DF, p-value: 1.012e-10. We 
find the confidence intervals for the coefficients of the WLS regression using: confint 
(fit.wls). 

We use the following commands to make the graphics of the regressions: 

name <-c("True regression","OLS regression", "WLS regression") 

colors.reg <- c("red", "blue", "black") 

type.line <- c(1, 2, 4) 

line.width <- c(3, 2, 4) 

plot(x,y, main = "True regression, OLS regression and WLS regression",lwd=1, 
bty="o") 
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abline(a=20,b=10,col=colors.reg[1],lty = type.line[1],lwd =line.width [1]) 

abline(fit.ols$coefficients, col=colors.reg[2], lty = type.line[2], lwd 
=line.width[2]) 

abline(fit.wls$coefficients,col=colors.reg[3],lty = type.line[3],lwd 
=line.width[3]) 

legend ("topleft", legend = name, col = colors.reg, lty = type.line,lwd = line.width 
,bty ="n") 

 

Figure 1 Truth regression, OLS regression and WLS regression for the simulate data. 

Bootstrap method: re-sampling errors. 

Another method for to estimating regression coefficients and standard deviation is 
the bootstrap method of re-sampling errors. 

sim.lm<-glm(y~x,data=sim.data) #  the regression 

sim.fit<-function(data) coef(glm(data$y~data$x)) 
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sim.diag<-glm.diag.plots(sim.lm,ret=T) # Diagnostics plots 

sim.res<-sim.diag$res*sim.diag$sd 

sim.res<-sim.res-mean(sim.res) 

sim.df<-data.frame(sim.data,res=sim.res,fit=fitted(sim.lm)) 

sim.model<-function(data,i){ 

 d<-data 

 d$y<-d$fit+d$res[i] 

 sim.fit(d) 

} 

fit.boot<-boot(sim.df,sim.model,R=9999) 

 

Figure 2 Diagnostics plots for sim.lm regression. 

The plot on the top left is a plot of the jackknife deviance residuals against the fitted 
values. The plot on the top right is a normal QQ plot of the standardized deviance 
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residuals. The dotted line is the expected line if the standardized residuals are 
normally distributed. The bottom two panels are plots of the Cook statistics. On the 
left is a plot of the Cook statistics against the standardized leverages. The final plot 
again shows the Cook statistic this time plotted against case number enabling us to 
find which observations are influential (Davison, A.C. and Snell, E.J., 1991). 

summary (fit.boot) 

Bootstrap Statistics (re-sampling errors without weight): 

 R Original  bias  std.error 

1 9999 9.038062  0.01855348 26.3335 

2 9999 10.045030  0.00809159 1.5606 

Bootstrap percentile interval and adjusted bootstrap percentile (BCa) interval. 

Calculations based on 9999 bootstrap replicates. 

boot.ci(fit.boot, index = 1:min(2,length(fit.boot$t0)),type = c('perc', 'bca')) 

 Level Percentile  BCa 

 95% (-41.597, 62.66) (-39.150, 65.582) 

boot.ci(fit.boot, index = 2:min(2,length(fit.boot$t0)),type = c('perc','bca')) 

 Level Percentile  BCa 

 95% (6.98, 13.08) (7.00, 13.11) 

Bootstrap method: re-sampling case. 

sim.fit<-function(data)coef(glm(data$y~data$x)) 

sim.case<-function(data,i)sim.fit(data[i,]) 

fit.boot.case<-boot(sim.data,sim.case,R=9999) 

fit.boot.case 

Bootstrap Statistics: (re-sampling cases without 
weight): 

 Original bias std. error 

t1* 9.3481021 0.3387152 18.40179 

t2* 10.023602 -0.0594927 1.64067 

Bootstrap method: weight error resamling. 

plot(fit.boot.case,index=2,jack=T) 

sim.lm.w<-glm(y~x,weight=1/(1+5*x),data=sim.data) 
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sim.fit.w<-function(data) coef(glm(data$y~data$x)) 

sim.diag.w<-glm.diag.plots(sim.lm.w,ret=T) 

The last command makes plot of jackknife deviance residuals against linear predictor, 
normal scores plots of standardized deviance residuals, plot of approximate Cook 

statistics against 
1

i

i

h

h−
where ih  are the leverages. 

sim.res.w<-sim.res-mean(sim.res.w) 

sim.df.w<-data.frame(sim.data,res=sim.res.w,fit=fitted(sim.lm.w)) 

sim.model<-function(data,i){ d<-data 

d$y<-d$fit+d$res[i] 

sim.fit(d)} 

fit.boot.w<-boot(sim.df.w,sim.model,R=9999); fit.boot.w 

Bootstrap Statistics (re-sampling errors with 
weights): 

 Original bias  std. error 

t1* 19.289300 -0.50796443 26.0353 

t2* 9.3432310 0.03159331 1.5364 

We find bootstrap percentile interval and adjusted bootstrap percentile (BCa) 
interval only for the second coefficient of the regression fit.boot.w. 

Level Percentile  BCa 

95% (6.318, 12.342) (6.471, 12.518) 

Bootstrap methods: weight errors and re-sampling case 

sim.fit.w<-function(data)coef(glm(data$y~data$x,weight=1/(1+5*x))) 

sim.case.w<-function(data,i)sim.fit(data[i,]) 

fit.boot.case.w<-boot(sim.data,sim.case,R=9999); summary(fit.boot.case.w) 

Summary table: Estimate errors and standard deviations. 

Method Coefficients Std. Error 

True regression 
0 =20 - 

1 =10 - 
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OLS regression 
0̂ = 9.348 25.969 

1̂ = 10.024 1.538 

WLS regression 
0̂ = 19.5242 6.5710 

1̂ = 9.3218 0.9343 

Bootstrap method resampling errors 
without weight 

0̂ = 9.038062 26.3335 

1̂ = 10.045030 1.5606 

Bootstrap method resampling cases 
without weight 

0̂ = 9.3481021 18.40179 

1̂ = 10.023602 1.64067 

Bootstrap method resampling errors 
with weights 

0̂ = 19.289300 26.0353 

1̂ = 8.957616 1.5364 

Bootstrap method resampling case 
with weights 

0̂ = 9.348102 18.5540 

1̂ = 10.02364 1.6552 

Conclusions 

For linear regression with normal random errors having constant variance, the least 
squares method of the coefficients estimators and standard deviation are accurate, 
but when the random errors having non constant variance, the estimators with this 
method are not accurate. The bootstrap methods improved quantile estimation. The 
WLS method is the most accurate where we know weights errors. Where we don’t 
know completely the form of the variance of error, we can use bootstrap method 
resampling errors. We can use packages inside R software to get results. 
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