
ISSN 2411-958X (Print) 
ISSN 2411-4138 (Online) 

European Journal of  
Interdisciplinary Studies 

July - December 2019 
Volume 5, Issue 2 

 

 
11 

Existence and Uniqueness Results for Two-Dimensional 
Stochastic Linearised Boussinesq Equation 

 

Sofije Hoxha 

University of Fan.S.Noli, Albania 

Fejzi Kolaneci 

 

Abstract 

The water flow in saturated zones of the soil is described by two-dimensional 
Boussinesq equation. This paper is devoted to investigating the linearised 
stochastic Boussinesq problem in the presence of randomness in hydraulic 
conductivity, drainable porosity, recharge, evapotranspiration, initial 
condition and boundary condition. We use the Sabolev spaces and Galerkin 
method. Under some suitable assumptions, we prove the existence and 
uniqueness results, as well as, the continuous dependence on the data for the 
solution of linearised stochastic Boussinesq problem. Keywords: linearised 
stochastic Boussinesq equation, Galerkin method, existence and uniqueness 
results, and continuous dependence on the data. 

Keywords: existence and uniqueness results for two-dimensional stochastic 
linearised Boussinesq equation 

 

1. Introduction  

The water flow for an unconfined aquifer of the soil is described by Boussinesq 
equation (1904). The equation results from the application of the mass conservation 
principle, Darcy’s law, and the Dupuit-Forchheimer hypothesis (Bear, 1972). The two-
dimensional Boussinesq equation is: 

𝜕𝑢

𝜕𝑡
= ∑

𝜕

𝜕𝑥ᵢ
[

2

𝑖=1

𝑘ᵢ

𝑠
(𝑢 + 𝑑)

𝜕

𝜕𝑥ᵢ
(𝑢 + 𝑑)] +

𝑟 − 𝐸𝑇

𝑠
,    (1) 

(𝑥, 𝑡) ∈ D× (0, 𝑇], 

where 𝑥 = (𝑥₁, 𝑥₂) ∈  𝐷 ⊂ 𝑅² denote the space coordinates (variables), t is the time 
variable, 𝐷 denotes a bounded spatial domain with smooth boundary 𝜕𝐷, 𝑇 >  0 is a 
constant,  
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𝑥 =  (𝑥₁, 𝑥₂),    |𝑥|² =  𝑥²₁ +  𝑥²₂ ,   𝑑𝑥 =  𝑑𝑥₁ ∗  𝑑𝑥₂, 𝑢 =  𝑢(𝑥, 𝑡) represents the 
elevation of the free surface (or hydraulic head) above the impervious layer, d denotes 
aquifer’s depth (measured from the impervious layer), 𝑘ᵢ denotes the saturated 
hydraulic conductivity of the soils along i direction, ET denotes the 
evapotranspiration, r denotes the recharge, s denotes the drainable porosity.  

The Boussinesq equation associated with initial condition: 

u (x, 0) = u ₀(x) , x∈  D,   (2) 

and with Dirichlet boundary condition 

𝑢 (𝑥, 𝑡) =  𝐻 (𝑥, 𝑡),    (𝑥, 𝑡)  ∈  ∂𝐷 × ( 0, T)      (3) 

where 𝑢₀ (𝑥) and 𝐻 (𝑥, 𝑡) are given function. Similarly, we can consider the Neumann 
boundary condition. 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑢 (𝑥)
= 𝐻1(𝑥, 𝑡)    ,   (𝑥, 𝑡) ∈ 𝜕𝐷 × (0, 𝑇] 

The linearised Boussinesq equation is 

∂u

∂t
= ∑

∂

∂xi
[

ki

s
H0

2
i=1

∂

∂xi
(u + d)] +

r−ET

s
, (x, t) ∈ D × (0, T]  (4) 

where 𝐻0 (constant) represent the average depth of the aquifer. 

In the present study we investigate the linearised stochastic Boussinesq equation 

∂u(x, t, ω)

∂t
= ∑

∂

∂xi
[
ki(x, t, ω)

s(t, ω)
H0

2

i=1

∂

∂xi
(u(x, t, ω) + d(x, ω))]

+
r(x, t, u, ω) − ET(x, t, u, ω)

s(t, ω)
 

    (𝑥, 𝑡, 𝜔) ∈ 𝐷 × (0, 𝑇] × Ω      (5) 

Where Ω = {𝜔} denotes the sample space and 𝜔 denotes the probabilitary variable. 

The equation (5) associated with initial condition 

      u(x, 0, ω) = u0(x, ω)   ,   (x, ω) ∈ 𝐷 × Ω      (6) 

and with Dirichlet boundary condition  

   u(x, t, ω) = H(x, t, ω)   ,   (x, t, ω) ∈ 𝜕𝐷 × (0, 𝑇] × Ω   (7) 

Where u0(x, ω) and H(x, t, ω)    are given random function and random field, 
respectively. 

Similarly, we can consider von Neumann boundary condition. 

The Modern Soil science considers the soil as a complex dynamical system which 
evolves under total impact of the interactions between natural and biological factors 
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as well as the human activity. Because these interactions are random processes, it is 
reasonable to assume that the water flow in soil is described by a random field. 
Measurement errors of hydraulic conductivity, drainable porosity, recharge and 
evapotranspiration are the other reason for the presence of randomness in the soil’s 
water flow process. These arguments have a lot of supporters among the soil 
scientists and physicists, who are showing a greater interest for stochastic models of 
water flow in soil. They use the stochastic models effectively in their work (research), 
see Freeze (1975), Cordova and Bras (1981), Chung and Austin (1987), etc. 

The experimental data from many countries, including Albania, support the 
hypothesis that hydraulic conductivity of the saturated soil, drainable porosity, 
recharge and evapotranspiration are random variables, see Averjanov (1972), Van 
Schilfgaarde (1974-1979), Freeze (1975), Hubert (1976), Skaggs and Tang (1976) , 
Sagar and Preller (1980), Cordova and Bras (1981), Kolaneci, Xinxo and Bica (1983), 
Chung and Austin (1987), etc. 

Depending on how the randomness is present (introduced) in unsteady water flow in 
soil, there are four mathematical problems, with increasing level of complexity: 

 1. The problem with random initial condition. 

 2. The problem with random boundary condition. 

 3. The problem with random recharge or evapotranspiration. 

 4. The problem with random hydraulic conductivity or drainable porosity. 

 The important achievements in the study of stochastic linearised Boussinesq 
problem are:  

The paper is organized as follows. In section 2 we formulate the problem (5), (6), (7) 
in an appropriate functional setting. In section 3 we give the existence and uniqueness 
theorem for problem (5), (6), (7). Section 4 contains conclusion. 

2. Functional setting and formulation of the problem. 

 Let (Ω, 𝐹, µ) or (Ω, 𝐹, 𝑃) be a complete probability space, where Ω = { 𝜔} denotes the 
space of elementary events (or the space of basic outcomes), F is the 𝜎-algebra 
associated with Ω, and µ (or P) is the probability measure defined on F. The 𝜎 -algebra 
F can be interpreted as a collection of all random events 𝜔 ∈  Ω and that have a well-
defined probability with respect to F. In the present study use the Theory of Sobolev 
Spaces, see Adams (1975), Tribel (1986).  

A real-valued random variable X=X(𝜔) is a mapping 𝑋: Ω−> 𝑅.  

Assume that the probability measure µ has a numerable basis D⊂ 𝑅2 denotes a 
bounded domain with smooth boundary 𝜕𝐷, 0 < 𝑇 < +∞    𝑄𝑇 = 𝐷 × (0, 𝑇] and 
𝑆𝑇 = 𝜕𝐷 × (0, 𝑇] 

The separable Hilbert space 𝐿²(𝛺) is well-known 
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M= {f (x,𝜔): 𝐷 →  𝐿² (Ω)} denotes the set of second order random functions f(x,𝜔) 
over the domain𝐷. 

Define the space 

    H= L² (D; L² (Ω))= {f= f (x, 𝜔) ∈ M,  

|| 𝑓 ||Ω  ∈ L² (D)}, 

Equipped with scalar product 

(𝑓, 𝑔)𝐻 =∫ (𝑓, 𝑔)Ω𝐷
𝑑𝑥, ∀ 𝑓, 𝑔 ∈ H. 

The induced norm from the scalar product is: 

|| 𝑓 ||𝐻 =(∫ (|| f ||Ω² 𝑑𝑥)
𝐷

1/2
, ∀ 𝑓 ∈ H. 

Proved that H is separable Hilbert. 

Definition of the functional spaces 𝐶∞(D), 

ℒ(D), 𝔇1(𝐷; L2(𝛺)),   𝐶𝑚(𝐷; L2(𝛺))𝑓𝑜𝑟 𝑚 ≥0, 𝐶𝑐
𝑚(𝐷, L2(Ω))  𝑎𝑛𝑑 Hm = Hm(D; 

L²(Ω)) are well known. 

For f= f(x,𝜔)∈ M are defined generalised derivates of order α with respect to x:  

𝐷𝛼f (φ)=(−1)|𝛼| ∫ 𝑓
𝐷

𝐷𝛼φ𝑑𝑥, φ∈ 𝔇(𝐷),  𝛼= (α₁, α₂) , |α|=α₁+ α₂). 

Denotes the outward normal in an arbitrary point x∈ 𝜕𝐷. 

if f∈ Hm=Hm(D; L²(Ω)), ≪m- trace of f on  𝜕𝐷 ≫ is defined: 

𝛾(𝑚)(𝑓) = {𝑓,
𝜕𝑓

𝜕
, …, 

𝜕𝑚−1𝑓

𝜕𝑚−1 }, m=2,3,4,… 

It is obvious that 𝛾(𝑚)(𝑓) ∈ (L2(𝐷); L2(𝛺))
𝑚

, where the right-hand side denotes 

Cartesian product. 

Consider the space. 

H0
𝑚 = H0

𝑚(𝐷, L2(Ω))= {f∈ H𝑚, 𝛾(𝑚)(𝑓) = 0}     H0
m is a closed subspace of Hm. 

The Banach space L∞ (Ω),L∞ (QT; L2(Ω)) and L∞((QT; L∞(Ω)) are well known. 

Consider the separable Hilbert space V such that V⊂H, V dense in H, V⊂ H (V 
continuously embedded in H). 

That is, (𝑉, H, 𝑉′) represent a Gelfand triplet. 

( , )Vdenotes the scalar product in V, 

( , )Hdenotes the scalar product in H, 

( , )𝑉1denotes the scalar product in V′, 
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The induced norms are || ||V, || ||H, || ||𝑉′  

Respectively. 

Defined the space  

𝐿2(0, 𝑇, 𝑉) = {𝑓 = 𝑓(𝑥, 𝑡, 𝜔): [0, 𝑇] → 𝑉,    ∫ ‖𝑓‖𝑉
2 𝑑𝑡 < +∞}

𝑇

0

 

Equipped with scalar product  

(𝑓, 𝑔)𝐿2(0,𝑇,𝑉) = ∫ (𝑓, 𝑔)𝑉𝑑𝑡     ∀𝑓, 𝑔 ∈ 𝐿2(0, 𝑇, 𝑉)
𝑇

0

 

The induced norm from the scalar product is  

‖𝑓‖𝐿2(0,𝑇,𝑉) = (∫ ‖𝑓‖𝑉
2 𝑑𝑡

𝑇

0

)1/2 

𝐿2(0, 𝑇, 𝑉) is separable Hilbert space. 

Similarly defined the separable Hilbert space𝐿2(0, 𝑇, 𝐻),  𝐿2(0, 𝑇, 𝑉′),   𝐿2(−∞, 𝑇, 𝑉) 
and 𝐿2(−∞, 𝑇, 𝐻) , see Tribel (1986). 

Defined the space  

𝑊(0, 𝑇) = {𝑓 ∈ 𝐿2(0, 𝑇, 𝑉) , 𝐷𝑡𝑓 ∈ 𝐿2(0, 𝑇, 𝑉′) 

Equipped with scalar product 

(𝑓, 𝑔)𝑤 = ∫ [(𝑓, 𝑔)𝑉 + (𝐷𝑡𝑓, 𝐷𝑡𝑔)𝑉′]𝑑𝑡     ∀𝑓, 𝑔 ∈ 𝑊(0, 𝑇)
𝑇

0

 

The induced norm in 𝑊(0, 𝑇) from the scalar product is  

‖𝑓‖𝑊 = (∫ [‖𝑓‖𝑉
2 + ‖𝐷𝑡𝑓‖𝑉′

2 ]𝑑𝑡
𝑇

0

)1/2 

𝑊(0, 𝑇)is separable Hilbert space 𝑊(0, 𝑇) ⊂ 𝐶([0, 𝑇], 𝐻) ,  

      < 𝑢′(𝑡), 𝑣 >= 𝐷𝑡(𝑢(𝑡), 𝑣)𝐻 = (𝑢′(𝑡), 𝑣)𝐻 , 

∀ 𝑢(𝑡) ∈ 𝑊(0, 𝑇) 𝑎𝑛𝑑 ∀ 𝑣 ∈ 𝑉 

𝐷𝑡‖𝑢(𝑡)‖𝐻
2 = 2 < 𝑢′(𝑡), 𝑢(𝑡) >, ∀ 𝑢(𝑡) ∈ 𝑊(0, 𝑇)   

see Dautary and Lions (1985), Tribel (1986). 

The symbol  <. , . > denotes the duality between the Hilbert spaces V’ and V. 

Given a family 𝑎(𝑡, 𝑢, 𝑣) of the continous bilinear forms defined on V× 𝑉 with the 
parameter 𝑡 ∈ (0, 𝑇). 
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Assume that 𝑎(𝑡, 𝑢, 𝑣) satisface the conditions: 

∃𝛼 positive constant real number 𝑐 = 𝑐(𝑇) with that    

|𝑎(𝑡, 𝑢, 𝑣)| ≤ 𝑐‖𝑢‖𝑉 ‖𝑣‖𝑉 , ∀𝑡 ∈ (0, 𝑇), ∀𝑢 ∈ 𝑉 𝑎𝑛𝑑 ∀𝑣 ∈ 𝑉   (8) 

∃ the constant real numbers 𝜇 𝑎𝑛𝑑 𝜇 > 0 with that  

 𝑎(𝑡, 𝑢, 𝑣) + 𝜇‖𝑢‖2
𝑉  ≥ 𝛼‖𝑣‖𝑉

2
 , ∀𝑡 ∈ (0, 𝑇), ∀𝑣 ∈ 𝑉   (9) 

The condition (9) is V-chercivate hypothesis 

The family of random operators A(t) associated  with 𝑎(𝑡, 𝑢, 𝑣) is defined by  

𝑎(𝑡, 𝑢, 𝑣) =< 𝐴(𝑡)𝑢, 𝑣 > , ∀𝑡 ∈ (0, 𝑇), ∀𝑢 ∈ 𝑉 𝑎𝑛𝑑 ∀𝑣 ∈ 𝑉(10) 

Is proved that A(t) ∈ 𝐿(𝑣, 𝑉′) and 𝐴(𝑡) ∈ 𝐿(𝐿2(0, 𝑇, 𝑉); 𝐿2(0, 𝑇, 𝑉′)) , see Lions (1972). 

If 𝐴(𝑡)𝑢 ∈ 𝐻 , ∀𝑡 ∈ (0, 𝑇), ∀𝑢 ∈ 𝑉 then we can prove that  

< 𝐴(𝑡)𝑢, 𝑣 >= (𝐴(𝑡)𝑢, 𝑣)𝐻 ,   ∀𝑣 ∈ 𝑉      (11) 

Consider the random evolutionary equation: 

𝐷𝑡𝑢(𝑡) + 𝐴(𝑡)𝑢(𝑡) = 𝑓(𝑡)   (𝑥, 𝑡, 𝜔) ∈ 𝑄 × Ω(12) 

With initial condition  

𝑢(0) = 𝑢0 ,   (𝑥, 𝜔) ∈ 𝐷 × Ω   (13) 

The family of random operators A(t) is defined by (10). Assume that  𝑓(𝑡) ∈
𝐿2(0, 𝑇, 𝑉′)𝑎𝑛𝑑 𝑢0  ∈ 𝐻  

 Problem 1  

Given (𝑡) ∈ 𝐿2(0, 𝑇, 𝑉′) , 𝑢0  ∈ 𝐻  𝑎𝑛𝑑 𝐴(𝑡) defined by (10). Find the random field 

 𝑢 = 𝑢(𝑥, 𝑡, 𝜔) ∈ 𝑊(0, 𝑇) Which satisfies (12) for almost all (𝑥, 𝑡, 𝜔) ∈ 𝑄 × Ω   and 
(13). 

By definition, 𝑢 = 𝑢(𝑥, 𝑡, 𝜔) is a solution of the problem (12), (13) if the above 
mentioned conditions are satisfied? 

 3. Existence and uniqueness results 

 In this section we will prove: 

 Theorem 1 

 Suppose that the assumptions (8), (9) are satisfied. Prove that the problem 1 has a 
unique solution 𝑢 = 𝑢(𝑥, 𝑡, 𝜔) ∈ 𝑊(0, 𝑇) which depends continuously on the data. 
The proof of Theorem 1 undergoes through several steps. 

Step1. Preliminary reduction of the problem 
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 We can assume that (9) is satisfied for 𝜆 = 0. Substituting 𝑢 = 𝑧𝑒𝑘𝑡 where k is an 
arbitrary real number, the problem 1 transformed in equivalent problem: 

 Find 𝑧 = 𝑧(𝑥, 𝑡, 𝜔) which satisfies the identity 𝑎(𝑡, 𝑧, 𝑣) +  𝑘(𝑧, 𝑣)𝐻 + 𝐷𝑡(𝑧, 𝑣)𝐻 =

(𝑒−𝑘𝑡𝑓, 𝑣)
𝐻

 + (𝑢0, 𝑣)𝐻 , ∀𝑣 ∈ 𝑉, 

With 𝑍(𝑥, 𝑡, 𝜔) ≡ 0 for t<0. In this identity, 𝑎(𝑡, 𝑢, 𝑣) substituded by 𝑎(𝑡, 𝑧, 𝑣)  +
 𝑘(𝑧, 𝑣)𝐻 . Choosing 𝑘 = 𝜆 we obtain the desirable result.  

Step II. Proving the existence of the solution  

To prove the existence of the solution of stochastic problem (12), (13), we modify the 
Galerkin method, developed by Dautray and Lions (1985) for deterministic parabolic 
partial differential equations, see Dautray and Lions (1985), pp 619-627.  

The Hilbert space V is separable. Therefore, ∃ is the basis 𝜔1, 𝜔2, 𝜔3, … . , 𝜔𝑚.…. Of V in 
the following sense: ∀𝑚 ∈ 𝑁 the elements 𝜔1, 𝜔2, 𝜔3, … . , 𝜔𝑚.….  are the linearly 
independent and the set of the all finite linear combinations 

     ∑ 𝜁𝑛𝑤𝑛 , 𝜁𝑛 ∈ 𝑅 , 𝑛 ∈ 𝑁 𝑛 is dense in V. 

For each m=1,2,3,…. Define approximate solution 𝑢𝑚 = 𝑢𝑚(𝑥, 𝑡, 𝜔) of the problem 
(12) ,(13) by using the following method: 

𝑢𝑚 = ∑ 𝑔𝑖𝑚(𝑡)𝑤𝑖
𝑚
𝑖=1   (14) 

(𝐷𝑡𝑢𝑚, 𝑤𝑗)𝐻 + 𝑎(𝑡, 𝑢𝑚, 𝑤𝑗) =< 𝑓, 𝑤𝑗 >      ∀𝑗 = 1,2,3, … . . , 𝑚     (15) 

𝑢𝑚(0) = 𝑢0𝑚 ∑ 𝜁𝑖𝑚𝑤𝑖
𝑚
𝑖=1 (16) 

where 𝑢0𝑚  is the orthogonal projection of 𝑢0 ∈ 𝐻 over the subspace spanned on  

𝑤1, 𝑤2, 𝑤3, … . , 𝑤𝑚. More generally, 𝑢0𝑚  denotes each element of the above 
mentioned subspace, which satisfies the condition: 

lim
𝑚→+∞

‖𝑢0𝑚 − 𝑢0‖𝐻 = 0 

The system (15) with initial condition (16) represents the Cauchy problem for the 
unknown deterministic functions  

 𝑔𝑚(𝑡) = {𝑔𝑖𝑚(𝑡)}𝑖=1
𝑚  :{𝑤𝑚𝐷𝑡𝑔𝑚(𝑡) + 𝐴𝑚(𝑡)𝑔𝑚(𝑡) = 𝑓𝑚(𝑡) ,    𝑔𝑚(0) = {𝜁𝑖𝑚}1≤𝑖≤𝑚. 

The matrices are: 

𝑊𝑚 = ‖(𝑤𝑖, 𝑤𝑗)
𝐻

‖
1≤𝑖≤𝑗≤𝑚

 , 

𝐴𝑚(𝑡) = ‖𝑎(𝑡, 𝑢𝑖, 𝑤𝑗)‖
1≤𝑖≤𝑗≤𝑚

 , 

𝑔𝑚(𝑡) = {𝑔𝑖𝑚(𝑡)}𝑖=1
𝑚  𝑎𝑛𝑑  𝑓𝑚(𝑡) = {𝑓(𝑡), 𝑤𝑗}1≤𝑖≤𝑚 
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𝑊𝑚 is a non degenerate matrix, because of 𝑤1, 𝑤2, 𝑤3, … . , 𝑤𝑚  are linearly 
independent. Therefore, the system (15), (16) has unique solution   𝑔𝑚(𝑡) for 𝑡 ∈
(0, 𝑇), see Arnold (1975). 

𝑓(𝑡) ∈ 𝐿2(0, 𝑇, 𝑉′) Implies that [𝑔𝑖𝑚(𝑡)]2 are integrable functions.  

Therefore, the 

𝑢𝑚 = 𝑢𝑚(𝑡) = 𝑢𝑚(𝑥, 𝑡, 𝜔) ∈ 𝐿2(0, 𝑇, 𝑉′) and 𝐷𝑡𝑢𝑚(𝑡) ∈ 𝐿2(0, 𝑇, 𝑉′)   (17) 

The proof of Theorem 1 continues similarly to the arguments presented by Dautray 
and Lions (1985), pp 619—627. 

We obtain the following results: 

𝐷𝑡‖𝑢𝑚‖𝐻
2 + 2𝛼‖𝑢𝑚‖𝑉

2 ≤ 2 < 𝑓, 𝑢𝑚 >≤ 𝛼‖𝑢𝑚‖𝑉
2 +

1

𝛼
‖𝑓‖𝑉′

2      (18) 

where 𝛼 denotes the cohercivity constant in (9) , 

𝑠𝑢𝑝‖𝑢𝑚(𝑡)‖𝐻
2 ≤ ‖𝑢0‖𝐻

2 +
1

𝛼
‖𝑓‖

𝐿2(0,𝑇,𝑉′)
2  ,  

the sequence {𝑢𝑚(𝑡)} is strogly bounded in the space 𝐿∞(0, 𝑇, 𝐻) ,  (19)    

the sequence {𝑢𝑚(𝑡)} is strogly bounded in the space 𝐿2(0, 𝑇, 𝑉) .   (20) 

There exist the element 𝑢 ∈ 𝐿2(0, 𝑇, 𝑉)and the subsequence of natural numbers m’, 
such that 𝑢𝑚′ → 𝑢 in ∗ weak topology of the space 𝐿∞(0, 𝑇, 𝐻) as m’→ +∞: 

∃𝑣 ∈ 𝐿1(0, 𝑇, 𝐻) such that  

lim
m’→+∞

∫ (𝑢𝑚′ − 𝑢, 𝑣)𝐻𝑑𝑡
𝑇

0
= 0,    (21) 

There exist 𝑢∗ ∈ 𝐿2(0, 𝑇, 𝑉)   and the subsequence m” of the sequence m’, such that 
𝑢𝑚" → 𝑢∗ in weak topolgy of 𝐿2(0, 𝑇, 𝑉) as m”→ +∞ 

lim
m’′→+∞

∫ < 𝑢𝑚′′ − 𝑢∗, 𝑣 > 𝑑𝑡
𝑇

0
= 0 ,∀𝑣 ∈ 𝐿2(0, 𝑇, 𝑉′)      (22) 

𝑢∗ = 𝑢 and lim
m’′→+∞

∫ (𝑢𝑚′′ − 𝑢∗, 𝑣)𝐻𝑑𝑡
𝑇

0
= 0  , ∀𝑣 ∈ 𝐿2(0, 𝑇, 𝐻)   ,      (23) 

𝑢 = 𝑢∗ ∈ 𝐿∞(0, 𝑇, 𝐻) ∩ 𝐿2(0, 𝑇, 𝑉)     (24) 

  𝑢 = 𝑢∗  is solution of the problem (12),(13). That is, u satisfies the equation (12) and 
the initial condition (13) 

 Step III. Proving the uniqueness of the solution 

 Assume that u and �̅� are solutions of the problem (12), (13) with data {f, 𝑢0} and { 𝑓,̅ 
𝑢0̅̅ ̅}, respectively. Using Vishik-Ladizhenskaja lemma, we prove that 

‖u − u̅‖L2(0,T,V) ≤
1

α
‖u0 − u0̅̅ ̅‖H

2 +
1

α2 ‖f − f‖̅
L2(0,T,V′)

2
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 Where 𝛼 denotes the cohercivity constant, see (9). The proof of Theorem 1 is 
complete. 

Remark 1 

The appropriate boundary condition for the stochastic problem (12), (13) depends 
on the choice of the Hilbert space V and random field 𝑓 = 𝑓(𝑥, 𝑡, 𝜔) 

Choose 𝑉 = 𝐻0
1(𝐷, 𝐿2(Ω))and suppose that (𝑓, 𝑣) = ∫ 𝐸(𝑓1𝑣)𝑑𝑥 + ∫ 𝐸(𝑓2𝑣)𝑑𝑠 , ∀𝑣 ∈

𝑉 where  

𝑓1 ∈ 𝐿2(𝑄𝑇; 𝐿2(Ω)) and 𝑓2 ∈ 𝐿2(𝑆𝑇; 𝐿2(Ω)) 

Under these conditions, the appropriate boundary condition for the problem (12), 
(13) is von Neumann condition  

𝜕𝑢

𝜕𝑣
= 𝑓2(𝑥, 𝑡, 𝜔) ,    (𝑥, 𝑡, 𝜔) ∈ 𝑆𝑇 × Ω,   𝑆𝑇 = 𝜕𝐷 × (0, 𝑇)  

Remark 2  

We distinguish between the deterministic and stochastic Boussinesq Problems:  

Galerikin method is an interior approximation f the Hilbert space V, see Team (1981). 
Therefore, in the stochastic Boussinesq problem are discredited the spatial variables 
𝑥1, 𝑥2 as well as the probabilitary variable 𝜔. 

Conclusion 

 In this paper we have studied the stochastic linearised two-dimensional Boussinesq 
problem in the Hilbert spaces. The randomness is the present in hydraulic 
conductivity, drainable porosity, (recharge-evapotranspiration), initial condition and 
boundary condition. We use Sobolev spaces and Galerkin method. Under suitable 
assumptions, we prove the existence and uniqueness theorem for the solution of the 
problem (12), (13).Numerical approximations of the solution of stochastic linearised 
Boussinesq equation is the next step of the present study. One important application 
of our study is in agricultural drainage. 
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